News Release

Devising new meat alternatives with 3D printing — and cocoa butter

Peer-Reviewed Publication

American Chemical Society

Devising new meat alternatives with 3D printing — and cocoa butter

image: That’s not cookie dough — it’s a meat alternative created with a 3D printer and plant-based ingredients, including cocoa butter. view more 

Credit: Adapted from ACS Food Science & Technology 2021, DOI: 10.1021/acsfoodscitech.1c00311

No longer just a dream of vegetarians and vegans, fake meat is becoming more widely available in grocery stores and restaurants. And more options are almost certainly on the way. In a study reported in ACS Food Science & Technology, one team has developed a new combination of plant-based ingredients tailored for 3D printing meat alternatives. Their most successful recipes required an odd-sounding addition: cocoa butter, derived from cocoa beans of chocolate fame.

From animal welfare to environmental sustainability, there are plenty of reasons people choose to avoid eating meat derived from animals. Many current meat alternatives rely on plant-based proteins, most often from soy and wheat, which can readily mimic the texture and nutritional value of the real thing. While 3D printing has already been tested for meat alternatives, none of the current formulations include proteins from these particular plants. So, Songbai Liu and Shanshan Wang wanted to figure out an approach to making a meat “dough” with soy and wheat protein that could be produced effectively with a 3D printer.

The researchers tested soy and wheat proteins in formulations containing several other ingredients using a 3D printer. They evaluated their concoctions based on the accuracy with which the dough could be laid down by the printer and how well it held its form. They also examined its texture and microstructure. The experiments revealed the importance of several additional ingredients, including the emulsifier Tween-80 and sodium alginate to control the texture. Heat-sensitive cocoa butter turned out to be a particularly important ingredient, making the dough more fluid at warm temperatures for printing, but then hardening afterward at room temperature, allowing the dough to retain its printed shape. One drawback, however, is that people who cannot eat wheat gluten or soy because of allergies or celiac disease would not be able to partake of the new alternatives. To address this issue, the researchers attempted to replace the soy protein with that from peas, but the resulting dough was too soft for printing. Even so, these experiments have identified a new strategy for formulating meat alternatives using this versatile technology, according to the researchers.

The authors acknowledge funding from the National Key Research and Development Program, the Zhejiang Public Welfare Technology Research Program, the Qinghai Science and Technology Program and the Foundation of Fuli Institute of Food Science at Zhejiang University.

The paper’s abstract is available here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook | LinkedIn | Instagram


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.